᠙᠊ᢖᢓ

Connecting the Concepts

We can read information about the graph of a quadratic function directly from the constants a, h, and k in $f(x) = a(x - h)^2 + k$.

642 CHAPTER 8 Quadratic Functions and Equations

For each graph of a quadratic function

$$f(x) = a(x-h)^2 + k$$

in Exercises 9-14:

- a) Tell whether a is positive or negative.
- b) Determine the vertex.
- c) Determine the axis of symmetry.
- **d**) *Determine the range.*

2345

2345

10. 🖸

12.

y A

5

3

 $2 - 1_1$

у

2345

17. $f(x) = -2x^2$ **19.** $g(x) = \frac{1}{3}x^2$ **21.** $h(x) = -\frac{1}{3}x^2$ **23.** $f(x) = \frac{5}{2}x^2$

13. 🖸

Graph.

y A

13

-5

15. $f(x) = x^2$.

 Image: 18. $f(x) = -3x^2$

 20. $g(x) = \frac{1}{4}x^2$

 22. $h(x) = -\frac{1}{4}x^2$

 24. $f(x) = \frac{3}{2}x^2$

16. $f(x) = -x^2$.

For each of the following, graph the function, label the vertex, and draw the axis of symmetry.

25. $g(x) = (x + 1)^2$	26. $g(x) = (x + 4)^2$.
27. $f(x) = (x - 2)^2$:	28. $f(x) = (x - 1)^2$.
29. $f(x) = -(x+1)^2$:	30. $f(x) = -(x - 1)^2$.
31. $g(x) = -(x-2)^2$ \Box	32. $g(x) = -(x + 4)^2$.

Answers to Exercises 9–64 are on pp. IA-18 and IA-19.

33. $f(x) = 2(x + 1)^2$ 34. $f(x) = 2(x + 4)^2$ 35. $g(x) = 3(x - 4)^2$ 36. $g(x) = 3(x - 5)^2$ 37. $h(x) = -\frac{1}{2}(x - 4)^2$ 38. $h(x) = -\frac{3}{2}(x - 2)^2$ 39. $f(x) = \frac{1}{2}(x - 1)^2$ 40. $f(x) = \frac{1}{3}(x + 2)^2$ 41. $f(x) = -2(x + 5)^2$ 42. $f(x) = 2(x + 7)^2$ 43. $h(x) = -3(x - \frac{1}{2})^2$ 44. $h(x) = -2(x + \frac{1}{2})^2$

For each of the following, graph the function and find the maximum value or the minimum value and the range of the function.

45. $f(x) = (x - 5)^2 + 2$ 46. $f(x) = (x + 3)^2 - 2$ 47. $f(x) = -(x + 2)^2 - 1$ 48. $f(x) = -(x - 1)^2 + 3$ 49. $g(x) = \frac{1}{2}(x + 4)^2 + 3$ 50. $g(x) = 2(x - 4)^2 - 1$ 51. $h(x) = -2(x - 1)^2 - 3$ 52. $h(x) = -\frac{1}{2}(x + 2)^2 + 1$ 53. $h(x) = -\frac{1}{2}(x + 2)^2 + 1$

For each of the following, graph the function and find the vertex, the axis of symmetry, the maximum value or the minimum value, and the range of the function.

53. $f(x) = (x + 1)^2 - 3$ 54. $f(x) = (x - 1)^2 + 2$ 55. $g(x) = -(x + 3)^2 + 5$ 56. $g(x) = -(x - 2)^2 - 4$ 57. $f(x) = \frac{1}{2}(x - 2)^2 + 1$ 58. $f(x) = -\frac{1}{2}(x + 1)^2 - 1$ 59. $h(x) = -2(x - 1)^2 - 3$ 60. $h(x) = -2(x + 1)^2 + 4$ 61. $f(x) = 2(x + 4)^2 + 1$ 62. $f(x) = 2(x - 5)^2 - 3$ 63. $g(x) = -\frac{3}{2}(x - 1)^2 + 4$ 64. $g(x) = \frac{3}{2}(x + 2)^2 - 3$ 54. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 55. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 56. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 57. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 58. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 59. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 50. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 51. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 52. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 53. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 54. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 55. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 56. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 57. $f(x) = \frac{3}{2}(x + 2)^2 - 3$ 57. Without graphing, find the vertex, the axis of symmetry, and the maximum value or the minimum value. **65.** $f(x) = 6(x - 8)^2 + 7 \frac{\text{Vertex: } (8, 7); \text{ axis of}}{\text{symmetry: } x = 8; \text{minimum: } 7}$ **66.** $f(x) = 4(x + 5)^2 - 6$ Vertex: (-5, -6); axis of **67.** $h(x) = -\frac{2}{7}(x + 6)^2 + 11$ **68.** $h(x) = -\frac{3}{11}(x - 7)^2 - 9$ **69.** $f(x) = (x - \frac{7}{2})^2 - \frac{29}{4}$ **70.** $f(x) = -(x + \frac{3}{4})^2 + \frac{17}{16}$ **71.** $f(x) = \sqrt{2}(x + 4.58)^2 + 65\pi$ **72.** $f(x) = 4\pi(x - 38.2)^2 - \sqrt{34}$ Vertex: $(38.2, -\sqrt{34});$ **axis of symmetry:** $x = 38.2; \text{minimum: } -\sqrt{34}$ **73.** While trying to graph $y = -\frac{1}{2}x^2 + 3x + 1$, Ibrahim

75. While trying to graph $y = -\frac{1}{2}x^2 + 3x + 1$, ibrahim gets the following screen. How can Ibrahim tell at a glance that a mistake has been made?

74. Explain, without plotting points, why the graph of $y = (x + 2)^2$ looks like the graph of $y = x^2$ translated 2 units to the left.

SKILL REVIEW

To prepare for Section 8.7, review finding intercepts and completing the square (Sections 2.3, 5.4, 5.5, and 8.1).

Find the x-intercept and the y-intercept. [2.3]

75. 8x - 6y = 24 x-intercept: (3, 0); y-intercept: (0, -4)

76. 3x + 4y = 8 x-intercept: $(\frac{8}{3}, 0)$; y-intercept: (0, 2)

Find the x-intercepts.

77. $y = x^2 + 8x + 15$ [5.4] (-5, 0), (-3, 0)**78.** $y = 2x^2 - x - 3$ [5.5] $(-1, 0), (\frac{3}{2}, 0)$

Replace the blanks with constants to form a true equation. [8.1]

79. $x^2 - 14x + \frac{49}{\frac{49}{4}} = (x - \frac{7}{2})^2$ **80.** $x^2 + 7x + \frac{49}{4} = (x + \frac{7}{2})^2$

SYNTHESIS

81. Before graphing a quadratic function, Cassandra always plots five points. First, she calculates and plots the coordinates of the vertex. Then she plots *four* more points after calculating *two* more ordered pairs. How is this possible?

☑ Answers to Exercises 67–71 and 83–88 are on p. IA-19.

82. If the graphs of $f(x) = a_1(x - h_1)^2 + k_1$ and $g(x) = a_2(x - h_2)^2 + k_2$ have the same shape, what, if anything, can you conclude about the *a*'s, the *h*'s, and the *k*'s? Why?

Write an equation for a function having a graph with the same shape as the graph of $f(x) = \frac{3}{5}x^2$, but with the given point as the vertex.

83.	(4,1) 🖸	84. (2, 6) ⊡	85. (3, −1) ⊡
86.	(5,−6) ⊡	87. (−2, −5) ⊡	88. (-4, -2)

For each of the following, write the equation of the parabola that has the shape of $f(x) = 2x^2$ or $g(x) = -2x^2$ and has a maximum value or a minimum value at the specified point.

89. Minimum: (2, 0) $f(x) = 2(x - 2)^2$

- **90.** Minimum: (-4, 0) $f(x) = 2(x + 4)^2$
- **91.** Maximum: (0, 3) $g(x) = -2x^2 + 3$
- **92.** Maximum: (3, 8) $g(x) = -2(x-3)^2 + 8$

Use the following graph of $f(x) = a(x - h)^2 + k$ for. Exercises 93–96.

- **93.** Describe what will happen to the graph if *h* is increased. The graph will move to the right.
- **94.** Describe what will happen to the graph if *k* is decreased. The graph will move down.
- **95.** Describe what will happen to the graph if *a* is replaced with -a. The graph will be reflected across the *x*-axis.
- **96.** Describe what will happen to the graph if (x h) is replaced with (x + h). The graph will move to the right. The vertex will be (-h, k). Find an equation for a quadratic function F that satisfies the following conditions.
- **97.** The graph of *F* is the same shape as the graph of *f*, where $f(x) = 3(x + 2)^2 + 7$, and F(x) is a minimum at the same point that $g(x) = -2(x - 5)^2 + 1$ is a maximum. $F(x) = 3(x - 5)^2 + 1$
- **98.** The graph of *F* is the same shape as the graph of *f*, where $f(x) = -\frac{1}{3}(x-2)^2 + 7$, and F(x) is a maximum at the same point that $g(x) = 2(x+4)^2 6$ is a minimum. $F(x) = -\frac{1}{3}(x+4)^2 6$