Connecting the Concepts

We can read information about the graph of a quadratic function directly from the constants a, h, and k in $f(x)=a(x-h)^{2}+k$.
Tells whether the graph opens up or down
Tells whether the function has a maximum or a minimum

$$
f(x)=a(x-h)^{2}+k
$$

Gives the axis of symmetry $-\uparrow$ of the graph -Gives the maximum or minimum
function value Together, give the vertex of the graph match the equation with the corresponding graph from those shown.

1. $(\mathrm{h}) ~ f(x)=2(x-1)^{2}+3$
2. (b) $f(x)=-2(x+1)^{2}+3$
3. (g) $f(x)=-2(x-1)^{2}+3$
4. (c) $f(x)=-2(x+1)^{2}-3$
5. $(\mathrm{f}) ~ f(x)=2(x+1)^{2}+3$
6. (e) $f(x)=2(x+1)^{2}-3$
7. $(\mathrm{d}) f(x)=2(x-1)^{2}-3$
8. (a) $f(x)=-2(x-1)^{2}-3$

For each graph of a quadratic function

$$
f(x)=a(x-h)^{2}+k
$$

in Exercises 9-14:
a) Tell whether a is positive or negative.
b) Determine the vertex.
c) Determine the axis of symmetry.
d) Determine the range.

Graph.
15. $f(x)=x^{2}$
16. $f(x)=-x^{2}$
17. $f(x)=-2 x^{2}$
18. $f(x)=-3 x^{2}$
19. $g(x)=\frac{1}{3} x^{2}$
20. $g(x)=\frac{1}{4} x^{2}$
21. $h(x)=-\frac{1}{3} x^{2}$
22. $h(x)=-\frac{1}{4} x^{2}$
23. $f(x)=\frac{5}{2} x^{2}$
24. $f(x)=\frac{3}{2} x^{2}$

Aha!

For each of the following, graph the function, label the vertex, and draw the axis of symmetry.
25. $g(x)=(x+1)^{2}$
26. $g(x)=(x+4)^{2}$
27. $f(x)=(x-2)^{2}$
28. $f(x)=(x-1)^{2}$
29. $f(x)=-(x+1)^{2}$
30. $f(x)=-(x-1)^{2}$
31. $g(x)=-(x-2)^{2}$
32. $g(x)=-(x+4)^{2}$

14.
33. $f(x)=2(x+1)^{2}$
34. $f(x)=2(x+4)^{2}$
35. $g(x)=3(x-4)^{2}$
36. $g(x)=3(x-5)^{2}$
37. $h(x)=-\frac{1}{2}(x-4)^{2}$
38. $h(x)=-\frac{3}{2}(x-2)^{2}$
39. $f(x)=\frac{1}{2}(x-1)^{2}$
40. $f(x)=\frac{1}{3}(x+2)^{2}$
41. $f(x)=-2(x+5)^{2}$
42. $f(x)=2(x+7)^{2}$
43. $h(x)=-3\left(x-\frac{1}{2}\right)^{2}$.
44. $h(x)=-2\left(x+\frac{1}{2}\right)^{2}$

For each of the following, graph the function and find the maximum value or the minimum value and the range of the function.
45. $f(x)=(x-5)^{2}+2$
46. $f(x)=(x+3)^{2}-2$
47. $f(x)=-(x+2)^{2}-1$
48. $f(x)=-(x-1)^{2}+3$
49. $g(x)=\frac{1}{2}(x+4)^{2}+3$
50. $g(x)=2(x-4)^{2}-1$
51. $h(x)=-2(x-1)^{2}-3$
52. $h(x)=-\frac{1}{2}(x+2)^{2}+1$

For each of the following, graph the function and find the vertex, the axis of symmetry, the maximum value or the minimum value, and the range of the function.
53. $f(x)=(x+1)^{2}-3$
54. $f(x)=(x-1)^{2}+2$
55. $g(x)=-(x+3)^{2}+5$
56. $g(x)=-(x-2)^{2}-4$
57. $f(x)=\frac{1}{2}(x-2)^{2}+1$
58. $f(x)=-\frac{1}{2}(x+1)^{2}-1$
59. $h(x)=-2(x-1)^{2}-3$
60. $h(x)=-2(x+1)^{2}+4$
61. $f(x)=2(x+4)^{2}+1$
62. $f(x)=2(x-5)^{2}-3$
63. $g(x)=-\frac{3}{2}(x-1)^{2}+4$
64. $g(x)=\frac{3}{2}(x+2)^{2}-3$

Without graphing, find the vertex, the axis of symmetry, and the maximum value or the minimum value.
65. $f(x)=6(x-8)^{2}+7$ Vertex: $(8,7)$; axis of
66. $f(x)=4(x+5)^{2}-6$ Vertex: $(-5,-6)$; axis of
67. $h(x)=-\frac{2}{7}(x+6)^{2}+11$
68. $h(x)=-\frac{3}{11}(x-7)^{2}-9$
69. $f(x)=\left(x-\frac{7}{2}\right)^{2}-\frac{29}{4}$
70. $f(x)=-\left(x+\frac{3}{4}\right)^{2}+\frac{17}{16}$
71. $f(x)=\sqrt{2}(x+4.58)^{2}+65 \pi$
72. $f(x)=4 \pi(x-38.2)^{2}-\sqrt{34}$ Vertex: $(38.2,-\sqrt{34})$;
73. While trying to graph $y=-\frac{1}{2} x^{2}+3 x+1$, Ibrahim gets the following screen. How can Ibrahim tell at a glance that a mistake has been made?

74. Explain, without plotting points, why the graph of $y=(x+2)^{2}$ looks like the graph of $y=x^{2}$ translated 2 units to the left.

SKILL REVIEW

To prepare for Section 8.7, review finding intercepts and completing the square (Sections 2.3, 5.4, 5.5, and 8.1).
Find the x-intercept and the y-intercept. [2.3]
75. $8 x-6 y=24 \quad x$-intercept: $(3,0) ; y$-intercept: $(0,-4)$
76. $3 x+4 y=8 \quad x$-intercept: $\left(\frac{8}{3}, 0\right)$; y-intercept: $(0,2)$

Find the x-intercepts.
77. $y=x^{2}+8 x+15[5.4] \quad(-5,0),(-3,0)$
78. $y=2 x^{2}-x-3[5.5] \quad(-1,0),\left(\frac{3}{2}, 0\right)$

Replace the blanks with constants to form a true equation. [8.1]
79. $x^{2}-14 x+\frac{49}{\frac{49}{4}}=\left(x-\frac{7}{\frac{7}{2}}\right)^{2}$
80. $x^{2}+7 x+\underline{\frac{49}{4}}=\left(x+\underline{\frac{7}{2}}\right)^{2}$

SYNTHESIS

81. Before graphing a quadratic function, Cassandra always plots five points. First, she calculates and plots the coordinates of the vertex. Then she plots four more points after calculating two more ordered pairs. How is this possible?
\square Answers to Exercises 67-71 and 83-88 are on p. IA-19.

TW 82. If the graphs of $f(x)=a_{1}\left(x-h_{1}\right)^{2}+k_{1}$ and $g(x)=a_{2}\left(x-h_{2}\right)^{2}+k_{2}$ have the same shape, what, if anything, can you conclude about the a 's, the h 's, and the k 's? Why?

Write an equation for a function having a graph with the same shape as the graph of $f(x)=\frac{3}{5} x^{2}$, but with the given point as the vertex.
83. $(4,1)$
84. $(2,6)$
85. $(3,-1)$
86. $(5,-6)$
87. $(-2,-5)$
88. $(-4,-2)$

For each of the following, write the equation of the parabola that has the shape of $f(x)=2 x^{2}$ or $g(x)=-2 x^{2}$ and has a maximum value or a minimum value at the specified point.
89. Minimum: $(2,0) \quad f(x)=2(x-2)^{2}$
90. Minimum: $(-4,0) \quad f(x)=2(x+4)^{2}$
91. Maximum: $(0,3) \quad g(x)=-2 x^{2}+3$
92. Maximum: $(3,8) \quad g(x)=-2(x-3)^{2}+8$

Use the following graph of $f(x)=a(x-h)^{2}+k$ for. Exercises 93-96.

93. Describe what will happen to the graph if h is increased. The graph will move to the right.
94. Describe what will happen to the graph if k is decreased. The graph will move down.
95. Describe what will happen to the graph if a is replaced with $-a$. The graph will be reflected across the x-axis.
96. Describe what will happen to the graph if $(x-h)$ is replaced with $(x+h)$. The graph will move to the right. The vertex will be $(-h, k)$;
Find an equation for a quadratic function F that satisfies the following conditions.
97. The graph of F is the same shape as the graph of f, where $f(x)=3(x+2)^{2}+7$, and $F(x)$ is a minimum at the same point that $g(x)=-2(x-5)^{2}+1$ is a maximum. $\quad F(x)=3(x-5)^{2}+1$
98. The graph of F is the same shape as the graph of f, where $f(x)=-\frac{1}{3}(x-2)^{2}+7$, and $F(x)$ is a maximum at the same point that $g(x)=2(x+4)^{2}-6$ is a minimum. $F(x)=-\frac{1}{3}(x+4)^{2}-6$

